Кристиан Хедедаль: о будущем клиентского обслуживания в банках


Кристиан Хедедаль: о будущем клиентского обслуживания в банках

Мы стоим на пороге эпохи, в которой технологии искусственного интеллекта и машинного обучения получают широкое распространение и использование. В нашу жизнь легко вошли голосовые помощники, такие как Amazon Alexa и Google Home, механизмы выработки рекомендаций стремительно развиваются. А теперь и искусственный интеллект незаметно становится частью нашей повседневности.

Еще несколько лет назад обычному человеку это даже не могло прийти в голову, а сегодня огромное количество потребителей с большим удовольствием просят своего личного помощника выключить свет у них дома, следуют совету Netflix о том, какой телесериал посмотреть или делают покупки на Amazon, исходя из его же предложений.

Применение этих знаний в сфере банковских и финансовых услуг идет несколько медленнее, поскольку она отличается более высокой сложностью и уровнем регулирования.

Будущее за персонализацией

Ранее, когда на рынке происходило движение или появлялись интересные торговые возможности или новости, банки звонили только самым важным своим клиентам. Они обсуждали с ними ситуацию в свете их конкретных нужд и структуры портфеля.

В наши дни, благодаря технологиям, такое индивидуальное обслуживание высокого уровня может получить каждый.

Искусственный интеллект дает возможность предоставления персональных услуг в невиданном ранее масштабе и с невиданной точностью благодаря использованию информации о клиентах и данных об их поведении.

Возможность персонализировать сервис и рекомендации является одним из наиболее захватывающих новых аспектов.

Опыт того же Netflix показал, что уровень использования персональных рекомендаций по просмотру видеоматериалов в три-четыре раза выше по сравнению с простым предложением наиболее популярных видеопрограмм.

На основе данных, которые банки получают в ходе ежедневной работы, таких как: предпочитаемые каждым клиентом торговые инструменты, динамика активности по времени суток, а также другой информации, тоже можно разработать новые методы индивидуального обслуживания клиентов.

Персонализированное обслуживание позволит каждому клиенту получать лучший и более актуальный опыт.

Конечно, если сообщать клиенту о каждом движении рынка и о новостях, связанных с каждым инструментом – это огромная и никому не нужная работа. Однако имеет смысл определить, какая информация актуальна для каждого отдельного клиента и предоставить ему эту информацию. Например, с помощью уведомления в рамках платформы или всплывающего новостного окна. Если клиенты получают нужную для себя информацию в нужный момент, это помогает им принять правильные решения.

Более того, использование машинного обучения помогает банку на каждом этапе взаимодействия с клиентом: от привлечения новых клиентов до предоставления им услуг трейдинга и методик удержания. Что наиболее важно, является составной частью процесса демократизации торгово-инвестиционного обслуживания.

Если технологические средства сделали общедоступным мировой финансовый рынок, то искусственный интеллект поможет всем клиентам получить индивидуально подготовленные и актуальные информационные материалы и услуги. Это обстоятельство поменяет ситуацию в области создания равных условий получения финансовых услуг.

Данные как актив

Нефть больше не является наиболее ценным ресурсом в мире – на смену ей пришли данные. Технология, стоящая за машинным обучением, построена на расширенном компьютерном моделировании, что само по себе замечательно, но она не имела бы смысла без заполнения качественными данными.

Данные лежат в основе всего, что мы делаем в сфере науки о данных. Для получения наибольшего эффекта от этих новых технологий очень важно инвестировать средства в чистые, высококачественные данные.

Специалисты по обработке и анализу данных тратят много времени на поддержание чистоты данных. Это может вызвать затруднения для некоторых крупных банков, где используются старые, оставшиеся с прошлых времен системы, или для тех, которые пережили поглощения и не успели произвести тщательную очистку клиентских данных.

Как в строительстве: если вложить средства в создание фундамента из титана, это, в первую очередь, окупится за счет долгосрочности и устойчивости сооружения.

Если же строители торопятся и для экономии времени используют в качестве соединительных материалов жевательную резинку и клейкую ленту, то неприятности начнутся, когда построенный объект не справится с требуемой нагрузкой.

Никто не знает, какие требования выдвинет завтрашний день, так что лучший способ подготовки – это обеспечение мощной, гибкой и устойчивой инфраструктуры.

Требуется корпоративная культура, в которой данные рассматриваются как актив, и не следует выбрасывать данные только потому, что нет времени, чтобы привести их в порядок.

Именно от данных зависит успех при введении машинного обучения в бизнес.

Поддержка – не лишнее

Еще одним важным моментом является четкое распределение полномочий. Введение машинного обучения – это преобразование, которое окажет большое влияние на весь рабочий процесс.

Во многих случаях оно дополнит или даже заменит собой выполнение задач человеком. Если вы не заручились полной поддержкой высшего руководства, то найти сторонников внутри предприятия может оказаться нелегко.

Наука о данных должна стать неотъемлемой частью организации бизнеса, чтобы выявить трудности, с которыми мы сталкиваемся, а затем постараться найти решение среди технологического инструментария.

Кроме поддержки высшего руководства, необходимо также широкое принятие на всех уровнях компании, чтобы обеспечить сотрудничество и добраться до первоисточника затруднений.

Помимо этого, важно, чтобы во всех подразделениях организации было понимание, чтó может дать применение науки о данных для конечного результата, а также осознание того, что мы говорим на одном и том же языке.

Друг, а не враг

Существует мнение, что искусственный интеллект – это роботы, которые сделают человеческий труд ненужным. Но дело не в избавлении от людского труда, а скорее, в использовании искусственного интеллекта и машинного обучения, чтобы обеспечить выполнение человеком большего количества нужной работы и еще лучшее обслуживание наших клиентов.

Однообразные и повторяющиеся задания можно поручить компьютерам, что позволит людям сосредоточиться на задачах большей сложности.

В случае более сложных задач искусственный интеллект и машинное обучение нужны в большей степени для оптимизации и помощи в аналитической обработке.

Наконец, искусственный интеллект также может стать мерой, которая поможет предоставить более широкому кругу клиентов доступ к тем услугам, которые ранее были доступны только небольшой группе лиц.

Если банк сможет сделать так, чтобы поддержка, которую специалисты качественно оказывают обеспеченным клиентам, с помощью цифровых решений стала доступна всем клиентам инвестиционного спектра – это и будет настоящим определением демократизации инвестиций.

Сегодня я вижу, что применение искусственного интеллекта и машинного обучения получило среди коллег широкую поддержку, так как они признали, что эти технологии могут помочь им лучше выполнять свою работу и демократизировать торговые операции.

Актуальность для организации дает науке о данных право на большую амбициозность в других инициативах, которым трудно было бы завоевать поддержку иначе. Это очень важный момент, потому что люди не то чтобы не понимают важность технологических инноваций. Если это не имеет к ним прямого отношения, люди, согласно самой их природе, будут слишком заняты, чтобы приспосабливаться к новому.

Рассматривая этот вопрос в большем масштабе, можно сказать, что те банки, которые никак не найдут времени на инновации, скоро почувствуют на себе, что машинное обучение и искусственный интеллект – это уже не только будущее, но и настоящее.

Кристиан Хедедаль, глава отдела интеллектуальной обработки данных, Saxo Bank

  • i

    Если Вы заметили ошибку, выделите необходимый текст и нажмите Ctrl+Enter, чтобы сообщить нам об этом.

  • !

    Колонка отражает исключительно точку зрения автора и может не совпадать с мнением редакции. Публикация колонок осуществляется согласно Правил, а Finance.ua выполняет лишь роль носителя. Копировать эти авторские материалы можно только при наличии ссылки на автора и Finance.ua.

Смотри также
Весь рынок:Кредит&Депозит
Архивы:2018 2017 2016 2015
В Контексте Finance.ua
Опросы